Análise de duração

Prof. Francis Petterini

20 de outubro de 2025

1/16

Objetivo e notação

Objetivo: modelar o tempo até um evento (saída do emprego, desemprego, reincidência, falha etc.).

Notação básica para indivíduo i:

- Duração $T_i \in (0, \infty)$, intervalo aberto
- Sobrevivência $S(t) = \Pr(T \ge t)$ \Rightarrow F(t) = 1 S(t)
- Densidade $f(t) = -\frac{d}{dt}S(t)$
- Risco (hazard) $\lambda(t) = \lim_{\Delta \to 0} \frac{\Pr(t \le T < t + \Delta \mid T \ge t)}{\Delta} = \frac{f(t)}{S(t)}$, note que não é exatamente uma probabilidade, porque pode assumir valores maiores que 1

4□ > 4□ > 4 = > 4 = > = 90

2/16

Relações fundamentais

$$f(t) = \lambda(t) S(t), \qquad \Lambda(t) = \int_0^t \lambda(u) du$$

(risco acumulado)

$$S(t) = \exp\{-\Lambda(t)\}$$
 \iff $\lambda(t) = -\frac{d}{dt}\log S(t)$

Função de risco cumulativa (Nelson–Aalen):
$$\hat{\Lambda}(t) = \sum_{t_{(j)} \leq t} \frac{d_j}{n_j}$$

onde $t_{(j)}$ são tempos distintos de evento, d_j eventos em $t_{(j)}$ e n_j em risco imediatamente antes.

3/16

Função de verossimilhança (censura à direita)

Para cada i, seja t_i o tempo observado e $\delta_i \in \{0,1\}$ o indicador de evento (1=evento, 0=censura):

$$L_i = \left[\lambda(t_i \mid X_i)\right]^{\delta_i} S(t_i \mid X_i) \qquad \text{com} \quad S(t \mid X) = \exp\Big\{-\int_0^t \lambda(u \mid X) \, du\Big\}.$$

4/16

Riscos proporcionais (PH) e hazard ratio (HR)

Modelo PH (Cox):

$$\lambda(t \mid X) = \lambda_0(t) \exp(\beta' X).$$

Hazard ratio (definição):

$$\mathrm{HR}(t;X,\tilde{X})=rac{\lambda(t\mid X)}{\lambda(t\mid \tilde{X})}.$$

Sob PH,

$$\mathrm{HR}(t;X,\tilde{X})=\exp\{\beta'(X-\tilde{X})\}$$
 (constante em t).

Modelo não-PH (efeito variante no tempo):

$$\lambda(t \mid X) = \lambda_0(t) \exp(\beta' X + f(t) \gamma' X) \Rightarrow \operatorname{HR}(t; X, \tilde{X}) = \exp\{[\beta + f(t) \gamma]' (X - \tilde{X})\}.$$

5/16

Modelagem: Cox (PH) e AFT

Cox (PH):
$$\lambda(t \mid X) = \lambda_0(t) \exp(\beta' X)$$

- Estima β por verossimilhança parcial; $\lambda_0(t)$ via Breslow/ef. equivalentes.
- Predição: $S(t \mid X) = S_0(t)^{\exp(\beta' X)}$.

AFT (Accelerated Failure Time): $\log T = \mu + \beta' X + \sigma W$

- Famílias: Weibull, log-normal, log-logística, Gompertz, etc.
- Interpretação em *time ratio*: $TR = \exp(\beta_k)$ (multiplica o tempo característico).

Escolha prática:

ullet PH plausível \Rightarrow Cox; violações sistemáticas de PH \Rightarrow AFT/PH com efeitos do tempo.

6/16

AFT: μ , W e interpretação

Modelo AFT:

$$\log T = \mu + \beta' X + \sigma W,$$

onde μ é **locação** (intercepto em log T), $\sigma > 0$ é **escala**, e W é um erro **padronizado** com distribuição escolhida:

- $W \sim \mathcal{N}(0,1) \Rightarrow \textit{log-normal};$
- W logístico padrão ⇒ log-logístico;
- W Gumbel (extreme value) \Rightarrow Weibull (em AFT).

Interpretação (time ratio):

 $TR = \exp(\beta_k)$ multiplica um tempo característico (mediana/quantis).

Sobrevivência e hazard

$$S(t\mid X) = 1 - F_W\left(\frac{\log t - \mu - \beta'X}{\sigma}\right), \quad \lambda(t\mid X) = \frac{f_W(z)}{\sigma t\left[1 - F_W(z)\right]}, \quad z = \frac{\log t - \mu - \beta'X}{\sigma}.$$

Resumo: μ desloca a distribuição de log T; W define a família (forma); $\exp(\beta)$ fornece **time ratios** claros para comunicação substantiva.

Covariáveis variantes no tempo

- Estrutura: $\lambda(t \mid X_i(t)) = \lambda_0(t) \exp(\beta' X_i(t))$.
- Implementação: dividir o seguimento em intervalos $[t_{k-1}, t_k)$ com X constante em cada.
- Cuidados: evitar simultaneidade (internal time-dependent covariates); usar defasagens quando necessário.
- Interpretação: a HR é instantânea em t e depende de X(t) naquele instante.

8 / 16

Heterogeneidade não observada (fragilidade)

- Fragilidade multiplicativa: $\lambda(t \mid X, u) = u \lambda_0(t) \exp(\beta' X)$, tipicamente $u \sim \Gamma(\kappa, \kappa)$ (média 1).
- Interpretação: propensão individual persistente afeta a taxa em todos os tempos.
- Implicação: seleção dos mais frágeis no início pode induzir *decaimento* aparente da hazard (duração dependente).

9/16

Curva de Kaplan–Meier $\hat{S}(t)$: definição e estimação

Cenário: censura à direita. Seja $t_{(1)} < \cdots < t_{(J)}$ os tempos distintos de evento.

 $n_j = \#$ em risco imediatamente antes de $t_{(j)}, \qquad d_j = \#$ eventos em $t_{(j)}.$

Produto-limite (Kaplan-Meier):

$$\hat{S}(t) = \prod_{t_{(j)} \leq t} \left(1 - rac{d_j}{n_j}
ight) \ , \qquad \hat{S}(0) = 1.$$

- $\hat{S}(t)$ é **escada**: muda em tempos de evento.
- Greenwood (variância): $\widehat{\mathrm{Var}}\{\hat{S}(t)\} = \hat{S}(t)^2 \sum_{t_{(i)} \leq t} \frac{d_j}{n_i \, (n_i d_i)}$.

10 / 16

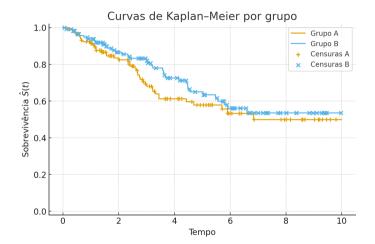


Tabela at risk

Tabela "at risk" por tempos de referência

Tempo	Grupo A: em risco	Grupo B: em risco
0	120	120
2	77	77
4	40	51
6	19	29
8	12	12
10	0	0

12 / 16

Cumulante de risco (Nelson–Aalen) e suavização

$$\hat{\Lambda}_{\mathsf{NA}}(t) = \sum_{t_{(j)} \leq t} rac{d_j}{n_j}, \qquad \hat{S}_{\mathsf{NA}}(t) = \exp\{-\hat{\Lambda}_{\mathsf{NA}}(t)\}.$$

Hazard suavizada: aplicar um kernel K_h aos incrementos em $t_{(j)}$:

$$\hat{\lambda}_{\mathcal{K}}(t)pprox\sum_{j}\mathcal{K}_{\mathit{h}}\!\!\left(t-t_{(j)}
ight)rac{d_{j}}{n_{j}}.$$

Uso: exibir $\hat{\Lambda}(t)$ (passos) e $\hat{\lambda}_K(t)$ (suave) por grupo; ICs para $\hat{\Lambda}$ via variância padrão; bandas para $\hat{\lambda}_K$ por bootstrap.

13 / 16

Outputs fundamentais e comparações

Descritivos não paramétricos

- Curva de Kaplan–Meier $\hat{S}(t)$ + tabela at risk.
- Mediana (e percentis) do tempo até o evento, com ICs.
- Cumulante de risco (Nelson–Aalen) $\hat{\Lambda}(t)$ e hazard suavizada $\hat{\lambda}(t)$.

Modelos

- Cox (PH): HRs $\exp(\beta)$, baseline $\hat{\Lambda}_0(t)$, $\hat{S}_0(t)$.
- AFT paramétricos (Weibull, log-normal, log-logística): time ratios e parâmetros de forma/escala.

14 / 16

Diagnóstico: resíduos de ajuste e influência

Objetivos: checar forma funcional e detectar observações influentes. **Notação** δ_i : indicador de evento.

$$\text{Martingale: } M_i = \delta_i - \hat{\Lambda}_0(t_i) \exp(\hat{\beta}' X_i), \quad \text{Deviance: } D_i = \text{sign}(M_i) \sqrt{-2\{M_i + \delta_i \log(\delta_i - M_i)\}}.$$

dfbeta_{ik} =
$$\hat{\beta}_k - \hat{\beta}_{k(-i)}$$
 (estimação sem a obs. i).

Sinais de alerta: $|D_i|$ grande (ajuste ruim) e |dfbeta_{ik}| grande (alta influência).

15 / 16

Diagnóstico: desempenho preditivo

Discriminação (C-index): ranking correto do risco.

$$C = \text{Pr}\left(\hat{\eta}_i > \hat{\eta}_j \mid t_i < t_j, \ \delta_i = 1\right)$$
 (ajuste por censura: IPCW/Uno).

Acurácia (Brier score)

$$BS(t) = \frac{1}{n} \sum_{i=1}^{n} w_i(t) (Y_i(t) - \hat{S}(t \mid X_i))^2, \ Y_i(t) = \mathbf{1}\{T_i > t\}.$$

Ajuste global

$$AIC = -2\ell + 2k, \quad BIC = -2\ell + k \log n.$$

16 / 16